Cosmic rays in galaxy clusters: transport and feedback

Christoph Pfrommer¹

in collaboration with

T. Thomas¹, K. Ehlert¹, S. Jacob², R. Weinberger³, R. Pakmor⁴, V. Springel⁴

¹AIP, ²HITS, ³Harvard, ⁴MPA

Physics of the ICM: Theory and Computation, Budapest, March, 2019

◀ □ ▶

- Introduction
- CR hydrodynamics

2 AGN feedback

- Steady-state models
- Cosmic rays in jets

Introduction CR hydrodynamics

Cosmic ray feedback: an extreme multi-scale problem

Milky Way-like galaxy:

 $\mathit{r_{gal}} \sim 10^4~\mathrm{pc}$

gyro-orbit of GeV cosmic ray:

$$r_{
m cr}=rac{p_{\perp}}{e\,B_{
m uG}}\sim 10^{-6}~
m pc\simrac{1}{4}~
m AU$$

\Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2018)

Introduction CR hydrodynamic

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob

э

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback

Cosmic ray transport AGN feedback CR hydrodynau

Interactions of CRs and magnetic fields

sketch: Jacob

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

Cosmic ray transport Introduction AGN feedback

Interactions of CRs and magnetic fields

sketch: Jacob

イロト イポト イヨト イヨト

 $\omega - \mathbf{k}_{\parallel}\mathbf{v}_{\parallel} = \mathbf{n}\Omega$ gyro resonance:

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

CRs scatter on magnetic fields → isotropization of CR momenta

Introduction CR hydrodynamics

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

Introduction CR hydrodynamics

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Introduction CR hydrodynamics

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction CR hydrodynamics

Modeling CR streaming A challenging hyperbolic/parabolic problem

streaming equation (no heating):

$$rac{\partial arepsilon_{
m cr}}{\partial t} + oldsymbol{
abla} \cdot \left[(arepsilon_{
m cr} + oldsymbol{\mathcal{P}}_{
m cr}) oldsymbol{
u}_{
m st}
ight] = 0$$

$$oldsymbol{v}_{st} = - \text{sgn}(oldsymbol{B} \cdot oldsymbol{
abla} P_{cr}) oldsymbol{v}_{a}$$

- CR streaming ~ CR advection with the Alfvén speed
- at local extrema, CR energy can overshoot and develop unphysical oscillations

Introduction CR hydrodynamics

Modeling CR streaming A challenging hyperbolic/parabolic problem

streaming equation (no heating):

$$rac{\partial arepsilon_{
m cr}}{\partial t} + oldsymbol{
abla} \cdot \left[(arepsilon_{
m cr} + oldsymbol{\mathcal{P}}_{
m cr}) oldsymbol{
u}_{
m st}
ight] = 0$$

$$oldsymbol{v}_{st} = - \text{sgn}(oldsymbol{B} \cdot oldsymbol{
abla} P_{cr}) oldsymbol{v}_{a}$$

- CR streaming ~ CR advection with the Alfvén speed
- at local extrema, CR energy can overshoot and develop unphysical oscillations

AIP

Modeling CR streaming – regularization

• 1D streaming equation (no heating):

$$\begin{aligned} &\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \frac{\partial}{\partial x} \left[(\varepsilon_{\rm cr} + P_{\rm cr}) v_{\rm st} \right] = 0 \\ &v_{\rm st} = -v_{\rm a} \text{sgn} \left(\frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \quad \rightarrow \quad \tilde{v}_{\rm st} = -v_{\rm a} \tanh \left(\frac{1}{\delta} \frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \end{aligned}$$

э

→ Ξ → < Ξ →</p>

Modeling CR streaming – regularization

ID streaming equation (no heating):

$$\begin{split} &\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \frac{\partial}{\partial x} \left[(\varepsilon_{\rm cr} + P_{\rm cr}) v_{\rm st} \right] = 0 \\ &v_{\rm st} = -v_{\rm a} {\rm sgn} \left(\frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \quad \rightarrow \quad \tilde{v}_{\rm st} = -v_{\rm a} \tanh \left(\frac{1}{\delta} \frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \end{split}$$

• regularized 1D streaming equation (no heating):

$$\begin{aligned} \frac{\partial \varepsilon_{\rm cr}}{\partial t} &+ \frac{\partial}{\partial x} \left[\tilde{V}_{\rm st} (\varepsilon_{\rm cr} + P_{\rm cr}) \right] &= 0 \\ \frac{\partial \varepsilon_{\rm cr}}{\partial t} &+ \tilde{V}_{\rm st} \frac{\partial}{\partial x} (\varepsilon_{\rm cr} + P_{\rm cr}) - \kappa_{\rm reg} \frac{\partial^2 \varepsilon_{\rm cr}}{\partial x^2} = 0, \\ \text{where} \quad \kappa_{\rm reg} &= v_{\rm a} \gamma_{\rm cr} \varepsilon_{\rm cr} \frac{1}{\delta} \text{sech}^2 \left(\frac{1}{\delta} \frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \qquad \text{(Sharma+ 2010)} \end{aligned}$$

regularized equation is advective at gradients and diffusive at extrema

イロト イポト イヨト イヨト

Modeling CR streaming – regularization

• 1D streaming equation (no heating):

$$\begin{split} &\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \frac{\partial}{\partial x} \left[(\varepsilon_{\rm cr} + P_{\rm cr}) v_{\rm st} \right] = 0 \\ &v_{\rm st} = -v_{\rm a} {\rm sgn} \left(\frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \quad \rightarrow \quad \tilde{v}_{\rm st} = -v_{\rm a} \tanh \left(\frac{1}{\delta} \frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \end{split}$$

• regularized 1D streaming equation (no heating):

$$\begin{aligned} \frac{\partial \varepsilon_{\rm cr}}{\partial t} &+ \frac{\partial}{\partial x} \left[\tilde{V}_{\rm st} (\varepsilon_{\rm cr} + P_{\rm cr}) \right] &= 0 \\ \frac{\partial \varepsilon_{\rm cr}}{\partial t} &+ \tilde{V}_{\rm st} \frac{\partial}{\partial x} (\varepsilon_{\rm cr} + P_{\rm cr}) - \kappa_{\rm reg} \frac{\partial^2 \varepsilon_{\rm cr}}{\partial x^2} = 0, \\ \text{where} \quad \kappa_{\rm reg} &= v_{\rm a} \gamma_{\rm cr} \varepsilon_{\rm cr} \frac{1}{\delta} \text{sech}^2 \left(\frac{1}{\delta} \frac{\partial \varepsilon_{\rm cr}}{\partial x} \right) \qquad \text{(Sharma+ 2010)} \end{aligned}$$

- regularized equation is advective at gradients and diffusive at extrema
- but: numerical diffusion dominates for CR sources on a background

Introduction CR hydrodynamics

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
• tangled B , strong scattering	CR diffusion	diffusive transport in clumpy medium
0 0		

→ Ξ → < Ξ →</p>

< < >> < </>

Introduction CR hydrodynamics

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
• tangled B , strong scattering	CR diffusion	diffusive transport in clumpy medium
 resolved <i>B</i>, strong scattering 	CR streaming with v a	Thomson scattering ($ au \gg$ 1) $ ightarrow$ advection with $m{ u}$

э

★ E → ★ E →

< < >> < </>

Introduction CR hydrodynamics

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
• tangled B , strong scattering	CR diffusion	diffusive transport in clumpy medium
 resolved <i>B</i>, strong scattering 	CR streaming with v a	Thomson scattering ($ au \gg$ 1) $ ightarrow$ advection with $m{v}$
 weak scattering 	CR streaming and diffusion	flux-limited diffusion with $ au \sim$ 1

э

・ロット (雪) (山) (山)

Introduction CR hydrodynamics

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
 tangled <i>B</i>, strong scattering 	CR diffusion	diffusive transport in clumpy medium
 resolved <i>B</i>, strong scattering 	CR streaming with v a	Thomson scattering ($\tau \gg$ 1) \rightarrow advection with v
 weak scattering 	CR streaming and diffusion	flux-limited diffusion with $ au \sim$ 1
 no scattering 	CR propagation with <i>c</i>	vacuum propagation

▶ < ∃ >

Introduction CR hydrodynamics

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
 tangled B, strong scattering 	CR diffusion	diffusive transport in clumpy medium
• resolved B , strong scattering	CR streaming with v a	Thomson scattering ($ au\gg$ 1) $ ightarrow$ advection with $m{ u}$
 weak scattering 	CR streaming and diffusion	flux-limited diffusion with $ au \sim$ 1
 no scattering 	CR propagation with <i>c</i>	vacuum propagation

but: CR hydrodynamics is charged RHD

ightarrow take gyrotropic average and account for anisotropic transport

프 🖌 🛪 프 🕨

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CR vs. radiation hydrodynamics

- Alfvén wave velocity in lab frame: $w_{\pm} = v \pm v_a$, CR scattering frequency $\bar{\nu}_{\pm}/c^2 = 1/(3\kappa_{\pm})$
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2 (Thomas & CP 2018):

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial \boldsymbol{f}_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{P}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

< ∃⇒

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CR vs. radiation hydrodynamics

- Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm}/c^{2} = 1/(3\kappa_{\pm})$
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2 (Thomas & CP 2018):

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial \boldsymbol{f}_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{P}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \nabla \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

AIP

CR vs. radiation hydrodynamics

- Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm}/c^{2} = 1/(3\kappa_{\pm})$
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2 (Thomas & CP 2018):

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial \boldsymbol{f}_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{P}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

problem: CR lab-frame equation requires resolving rapid gyrokinetics!

• • • • • • •

Alfvén-wave regulated CR transport

• comoving equ's for CR energy and momentum density, $\varepsilon_{\rm cr}$ and $f_{\rm cr}/c^2$ and Alfvén-wave energy density $\varepsilon_{\rm a,\pm}$ (Thomas & CP 2018)

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \nabla \cdot [\boldsymbol{v}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) + \boldsymbol{b}f_{\rm cr}] = \boldsymbol{v} \cdot \nabla \boldsymbol{P}_{\rm cr} \qquad (1)$$
$$- \frac{\boldsymbol{v}_{\rm a}}{3\kappa_{+}} \left[f_{\rm cr} - \boldsymbol{v}_{\rm a}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] + \frac{\boldsymbol{v}_{\rm a}}{3\kappa_{-}} \left[f_{\rm cr} + \boldsymbol{v}_{\rm a}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right],$$

$$\frac{\partial f_{\rm cr}/c^2}{\partial t} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{v} f_{\rm cr}/c^2 \right) + \boldsymbol{b} \cdot \boldsymbol{\nabla} P_{\rm cr} = -(\boldsymbol{b} \cdot \boldsymbol{\nabla} \boldsymbol{v}) \cdot (\boldsymbol{b} f_{\rm cr}/c^2) \quad (2)$$
$$- \frac{1}{3\kappa_+} \left[f_{\rm cr} - v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right] - \frac{1}{3\kappa_-} \left[f_{\rm cr} + v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right],$$

$$\frac{\partial \varepsilon_{a,\pm}}{\partial t} + \nabla \cdot [\boldsymbol{v}(\varepsilon_{a,\pm} + P_{a,\pm}) \pm v_{a}\boldsymbol{b}\varepsilon_{a,\pm}] = \boldsymbol{v} \cdot \nabla P_{a,\pm}$$

$$\pm \frac{v_{a}}{3\kappa_{\pm}} [f_{cr} \mp v_{a}(\varepsilon_{cr} + P_{cr})] - S_{a,\pm}.$$
(3)

イロト イポト イヨト イヨト

AIP

Alfvén-wave regulated CR transport

 comoving equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c² and Alfvén-wave energy density ε_{a,±} (Thomas & CP 2018)
 → pseudoforces (e.g., adiabatic changes)

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \nabla \cdot [\mathbf{v}(\varepsilon_{\rm cr} + P_{\rm cr}) + \mathbf{b}f_{\rm cr}] = \mathbf{v} \cdot \nabla P_{\rm cr} \qquad (1)$$
$$- \frac{V_{\rm a}}{3\kappa_{+}} [f_{\rm cr} - V_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr})] + \frac{V_{\rm a}}{3\kappa_{-}} [f_{\rm cr} + V_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr})],$$

$$\frac{\partial f_{\rm cr}/c^2}{\partial t} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{v} f_{\rm cr}/c^2 \right) + \boldsymbol{b} \cdot \boldsymbol{\nabla} P_{\rm cr} = -(\boldsymbol{b} \cdot \boldsymbol{\nabla} \boldsymbol{v}) \cdot (\boldsymbol{b} f_{\rm cr}/c^2) \quad (2)$$
$$- \frac{1}{3\kappa_+} \left[f_{\rm cr} - v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right] - \frac{1}{3\kappa_-} \left[f_{\rm cr} + v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right],$$

$$\frac{\partial \varepsilon_{a,\pm}}{\partial t} + \nabla \cdot [\mathbf{v}(\varepsilon_{a,\pm} + P_{a,\pm}) \pm v_{a}\mathbf{b}\varepsilon_{a,\pm}] = \mathbf{v} \cdot \nabla P_{a,\pm}$$

$$\pm \frac{v_{a}}{3\kappa_{\pm}} [f_{cr} \mp v_{a}(\varepsilon_{cr} + P_{cr})] - S_{a,\pm}.$$
(3)

AIP

Cosmic ray transport Intr AGN feedback CR

Introduction CR hydrodynamics

Non-equilibrium CR streaming and diffusion Coupling the evolution of CR and Alfvén wave energy densities

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback

Introduction CR hydrodynamics

Non-equilibrium CR streaming and diffusion Varying damping rate of Alfvén waves modulates the diffusivity of solution

Christoph Pfrommer

Cosmic rays in galaxy clusters: transport and feedback

Introduction CR hydrodynamics

Steady CR source: CR Alfvén wave heating

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback

Anisotropic CR streaming and diffusion – AREPO CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

- CR streaming and diffusion along magnetic field lines in the self-confinement picture
- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, ...
- Galilean invariant and causal transport
- energy and momentum conserving

Feedback by active galactic nuclei

Paradigm: accreting super-massive black holes at galaxy cluster centers launch relativistic jets, which provide energetic feedback to balance cooling \Rightarrow **but how?**

- Jacob & CP (2017a,b): study large sample of 40 cool core clusters
- spherically symmetric steady-state solutions where cosmic ray heating balances radiative cooling

Steady-state models Cosmic rays in jets

Case study A1795: heating and cooling

Jacob & CP (2016a)

• CR heating dominates in the center

• conductive heating takes over at larger radii, $\kappa = 0.42\kappa_{Sp}$

• ${\cal H}_{cr} + {\cal H}_{cond} \approx {\cal C}_{rad}$: modest mass deposition rate of 1 $M_{\odot} \, yr^{-1}$

Steady-state models Cosmic rays in jets

Gallery of solutions: density profiles

Christoph Pfrommer

Cosmic rays in galaxy clusters: transport and feedback

Steady-state models Cosmic rays in jets

Gallery of solutions: temperature profiles

Christoph Pfrommer

Cosmic rays in galaxy clusters: transport and feedback

Cosmic ray transport AGN feedback Cosmic rays in jets

Hadronically induced radio emission

Jacob & CP (2017b)

Cosmic ray transport AGN feedback Cosmic rays in jets

Hadronically induced radio emission: NVSS limits

• continuous sequence in $F_{\nu,\text{pred}}/F_{\nu,\text{NVSS}}$

Jacob & CP (2017b)

- CR heating viable solution for non-RMH clusters
- CR heating solution ruled out in radio mini halos (RMHs)

Christoph Pfrommer

Cosmic rays in galaxy clusters: transport and feedback

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

э

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

Cosmic ray transport Ste AGN feedback Cos

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

→

CR heating balances cooling

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

t

CRs stream outwards and become too dilute to heat the cluster

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

t

CRs stream outwards and become too dilute to heat the cluster

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cosmic ray transport Steady AGN feedback Cosmic

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

Cosmic ray transport Steady-st AGN feedback Cosmic ra

Steady-state models Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

Cosmic ray transport AGN feedback Cosmic rays in jets

Self-regulated heating/cooling cycle in cool cores

Jacob & CP (2017b)

possibly CR-heated cool cores vs. radio mini halo clusters:

- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance

Cosmic ray transport Steady-state mode AGN feedback Cosmic rays in jets

Jet simulation: gas density, CR energy density, B field

60 Myr

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback

Cosmic ray transport AGN feedback Cosmic rays in jets

Perseus cluster – heating vs. cooling: theory

• CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_o yr⁻¹

Cosmic ray transport Steady-state mode AGN feedback Cosmic rays in jets

Perseus cluster – heating vs. cooling: simulations

Ehlert, Weinberger, CP+ (2018)

- CR and conductive heating balance radiative cooling: $\mathcal{H}_{cr} + \mathcal{H}_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_o yr⁻¹
- simulated CR heating rate matches 1D steady state model

Conclusions on cosmic rays in clusters

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- moment expansion similar to radiation hydrodynamics
- Galilean invariant, energy and momentum conserving

Conclusions on cosmic rays in clusters

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- moment expansion similar to radiation hydrodynamics
- Galilean invariant, energy and momentum conserving

AGN feedback and CRs:

- steady-state CR heating: self-regulated cooling-heating loop
- MHD simulations of AGN jets: CR heating can solve the "cooling flow problem" in galaxy clusters

→ E → < E →</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cosmic ray transport AGN feedback Cosmic rays in jets

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

AIP

Christoph Pfrommer

Cosmic rays in galaxy clusters: transport and feedback

Literature for the talk

Cosmic ray transport:

 Thomas, Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS.

Cosmic ray feedback in galaxy clusters:

- Jacob & Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady state solutions, 2017a, MNRAS.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2017b, MNRAS.
- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters, 2018, MNRAS.

イロト イポト イヨト イヨト