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Cosmic ray transport
AGN feedback

Introduction
CR hydrodynamics

Cosmic ray feedback: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV cosmic ray:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2018)
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Introduction
CR hydrodynamics

Interactions of CRs and magnetic fields

B

Cosmic ray

sketch: Jacob

gyro resonance: ω − k‖v‖ = nΩ

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

CRs scatter on magnetic fields→ isotropization of CR momenta
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Introduction
CR hydrodynamics

CR streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > vA, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ vA

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling→ CR stream with waves
strong wave damping: less waves to scatter→ CR diffusion prevails
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Introduction
CR hydrodynamics

Modeling CR streaming
A challenging hyperbolic/parabolic problem

Sharma+ (2010)

streaming equation (no heating):

∂εcr

∂t
+∇ · [(εcr + Pcr)v st] = 0

v st = −sgn(B ·∇Pcr)va

CR streaming ∼ CR advection with
the Alfvén speed

at local extrema, CR energy can
overshoot and develop unphysical
oscillations

idea: regularize equations, similar to adding artificial viscosity
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Introduction
CR hydrodynamics

Modeling CR streaming – regularization

1D streaming equation (no heating):

∂εcr

∂t
+

∂

∂x
[(εcr + Pcr)vst] = 0

vst = −vasgn
(
∂εcr

∂x

)
→ ṽst = −va tanh

(
1
δ

∂εcr

∂x

)

regularized 1D streaming equation (no heating):

∂εcr

∂t
+

∂

∂x
[ṽst(εcr + Pcr)] = 0

∂εcr

∂t
+ ṽst

∂

∂x
(εcr + Pcr)− κreg

∂2εcr

∂x2 = 0,

where κreg = vaγcrεcr
1
δ

sech2
(

1
δ

∂εcr

∂x

)
(Sharma+ 2010)

regularized equation is advective at gradients and diffusive at extrema

but: numerical diffusion dominates for CR sources on a background
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+ ṽst

∂

∂x
(εcr + Pcr)− κreg

∂2εcr

∂x2 = 0,

where κreg = vaγcrεcr
1
δ

sech2
(

1
δ

∂εcr

∂x

)
(Sharma+ 2010)

regularized equation is advective at gradients and diffusive at extrema

but: numerical diffusion dominates for CR sources on a background

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Cosmic ray transport
AGN feedback

Introduction
CR hydrodynamics

Analogies of CR and radiation hydrodynamics
CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
• tangled B, CR diffusion diffusive transport

strong scattering in clumpy medium

• resolved B, CR streaming Thomson scattering (τ � 1)
strong scattering with va → advection with v

• weak scattering CR streaming flux-limited diffusion
and diffusion with τ ∼ 1

• no scattering CR propagation vacuum propagation
with c

but: CR hydrodynamics is charged RHD
→ take gyrotropic average and account for anisotropic transport
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Introduction
CR hydrodynamics

CR vs. radiation hydrodynamics

Alfvén wave velocity in lab frame: w± = v ± va,
CR scattering frequency ν̄±/c2 = 1/(3κ±)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

(Thomas & CP 2018):

∂εcr

∂t
+∇ · fcr = −w± · bb

3κ±
· [fcr −w±(εcr + Pcr)]− v ·gLorentz+Sε

1
c2

∂fcr

∂t
+∇ · Pcr = − bb

3κ±
· [fcr −w±(εcr + Pcr)]− gLorentz +Sf

lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

problem: CR lab-frame equation requires resolving rapid gyrokinetics!
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Introduction
CR hydrodynamics

Alfvén-wave regulated CR transport

comoving equ’s for CR energy and momentum density, εcr and fcr/c2

and Alfvén-wave energy density εa,± (Thomas & CP 2018)

→ pseudoforces (e.g., adiabatic changes)

∂εcr

∂t
+∇ · [v(εcr + Pcr) + bfcr] = v · ∇Pcr (1)

− va

3κ+
[fcr − va(εcr + Pcr)] +

va

3κ−
[fcr + va(εcr + Pcr)] ,

∂fcr/c2

∂t
+∇ ·

(
v fcr/c2

)
+ b · ∇Pcr = −(b · ∇v) · (bfcr/c2) (2)

− 1
3κ+

[fcr − va(εcr + Pcr)]− 1
3κ−

[fcr + va(εcr + Pcr)] ,

∂εa,±
∂t

+∇ · [v(εa,± + Pa,±)± vabεa,±] = v · ∇Pa,± (3)

± va

3κ±
[fcr ∓ va(εcr + Pcr)]− Sa,±.
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Introduction
CR hydrodynamics

Non-equilibrium CR streaming and diffusion
Coupling the evolution of CR and Alfvén wave energy densities

Thomas & CP (2018)

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback


tp_2018_fig_2.mov
Media File (video/quicktime)



Cosmic ray transport
AGN feedback

Introduction
CR hydrodynamics

Non-equilibrium CR streaming and diffusion
Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Introduction
CR hydrodynamics

Steady CR source: CR Alfvén wave heating

Thomas & CP (2018)
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Introduction
CR hydrodynamics

Anisotropic CR streaming and diffusion – AREPO
CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

CR streaming and diffusion
along magnetic field lines in
the self-confinement picture

moment expansion similar to
radiation hydrodynamics

accounts for kinetic physics:
non-linear Landau damping,
gyro-resonant instability, . . .

Galilean invariant and causal
transport

energy and momentum
conserving Thomas, Pakmor, CP (in prep.)
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Steady-state models
Cosmic rays in jets

Feedback by active galactic nuclei

Paradigm: accreting super-massive black holes at galaxy cluster
centers launch relativistic jets, which provide energetic feedback to
balance cooling⇒ but how?

Jacob & CP (2017a,b): study large
sample of 40 cool core clusters

spherically symmetric steady-state
solutions where cosmic ray heating
balances radiative cooling

Perseus cluster (NRAO/VLA/G. Taylor)
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Steady-state models
Cosmic rays in jets

Case study A1795: heating and cooling
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C
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Jacob & CP (2016a)

CR heating dominates in the center

conductive heating takes over at larger radii, κ = 0.42κSp

Hcr +Hcond ≈ Crad: modest mass deposition rate of 1 M� yr−1
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Steady-state models
Cosmic rays in jets

Gallery of solutions: density profiles
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Steady-state models
Cosmic rays in jets

Gallery of solutions: temperature profiles
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Steady-state models
Cosmic rays in jets

Hadronically induced radio emission
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continuous sequence in Fν,pred/Fν,NVSS

CR heating viable solution for non-RMH clusters

CR heating solution ruled out in radio mini halos (RMHs)
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Steady-state models
Cosmic rays in jets

Hadronically induced radio emission: NVSS limits
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continuous sequence in Fν,pred/Fν,NVSS

CR heating viable solution for non-RMH clusters

CR heating solution ruled out in radio mini halos (RMHs)
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Self-regulated heating/cooling cycle in cool cores
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Jacob & CP (2017b)
possibly CR-heated cool cores vs. radio mini halo clusters:

simmering SF: CR heating is effectively balancing cooling

abundant SF: heating/cooling out of balance
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Jet simulation: gas density, CR energy density, B field

Ehlert, Weinberger, CP+ (2018)
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Perseus cluster – heating vs. cooling: theory
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CR and conductive heating balance radiative cooling:
Hcr +Hth ≈ Crad: modest mass deposition rate of 1 M� yr−1
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Perseus cluster – heating vs. cooling: simulations
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Ehlert, Weinberger, CP+ (2018)

CR and conductive heating balance radiative cooling:
Hcr +Hth ≈ Crad: modest mass deposition rate of 1 M� yr−1

simulated CR heating rate matches 1D steady state model

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Cosmic ray transport
AGN feedback

Steady-state models
Cosmic rays in jets

Conclusions on cosmic rays in clusters

CR hydrodynamics:

novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

moment expansion similar to radiation hydrodynamics

Galilean invariant, energy and momentum conserving

AGN feedback and CRs:

steady-state CR heating: self-regulated cooling-heating loop

MHD simulations of AGN jets: CR heating can solve the “cooling
flow problem” in galaxy clusters
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Cosmic ray transport:
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Cosmic ray feedback in galaxy clusters:
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Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation
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