Electron Acceleration in Weak ICM Shocks as the Origin of Radio Relics

Hyesung Kang (Pusan National Univ., Korea) Dongsu Ryu, Ji-Hoon Ha (UNIST, Korea) T. W. Jones (Univ. of Minnesota, USA)

Key Physical Processes in ICM: shocks, turbulence, magnetic fields, & particle acceleration → nonthermal radiation

Radio relics: diffuse radio sources found mainly in merging clusters

Sausage Relic

double radio relics (RN + RS) in a merging cluster: acceleration or re-energization CR electrons by merger-driven shocks.

~1 Mpc

Key: Subcluster, Gas, Radio

http://www.mergingclustercollaboration.org/

Evolution of merger shocks in simulated merging clusters

Ha, Ryu, & Kang 2017

- 1. Performed several LCDM cosmological simulations with 1024³ grids on 50 h⁻¹ Mpc box
- 2. Identify merging clusters going through almost head-on collision with ~ 2:1 mass ratio & kT_x ~ 5 KeV \rightarrow 5 sample clusters
- 3. Identify three types of shocks associated with each merging cluster: equatorial shocks + 2 axial shocks

shock ahead of

LDMC

IDMC

- **4.** Calculate shock properties such as d_s , u_s , M_s , $F_{kin} = \rho_1 u_s^3 / 2$, F_{CR}
- 5. Calculate statistics over many shock samples

$$\langle d_s(t) \rangle, \langle u_s(t) \rangle, \langle M_s(t) \rangle, \langle M_s(t) \rangle_{\mathrm{CR}_{\mathrm{flux}}}$$

equatorial shocks

HDMC

gas

Evolution of Shock Properties in simulated merging clusters

Merger shocks are observed as X-ray shocks and radio relices at d 4 1 - 2 Mpc at t~1Gyrs after DM core passage with Mach number M_s ~ 2 - 4

gas

equatorial

shocks

axial shock ahead of LDMC

HDMC

axial shock ahead of HDMC

7

 M_s increases slightly as shocks move out due to lower T, while v_s tends fluctuate in the outskirt.

acceleration of CR electrons at these shocks consistent with observations of Radio relics

* note that variances are large.

Toothbrush Relic: halo + radio galaxies + radio relics

MERGING CLUSTER COLLABORATION:

A PANCHROMATIC ATLAS OF RADIO RELIC MERGERS

B1 relic:
$$M_{\text{radio}}^2 = \frac{(3 + 2\alpha_{sh})}{(2\alpha_{sh} - 1)} \Rightarrow M_{radio} \approx 2.8 \text{ but } M_X \approx 1.5$$

van Weeren + 2016

Some puzzles in DSA model with in situ injection only

- (1) For some radio relics, $M_{\rm radio} > M_{\rm X}$
- (2) Only ~10 % of merging clusters host radio relics, while numerous shocks are expected to form in ICM.
- (3) Some X-ray shocks do not have associated radio relics.
- (4) Injection of thermal electrons to DSA may be inefficient.

Possible solution is **Re-acceleration** model:

a radio relic forms when a weak shock encounters the ICM plasma with pre-existing fossil electrons.

-Fitting S_v, α_v , & v J_v simultaneously is necessary. -Many free parameters in DSA modeling

Kang & Ryu 2015 11

Model Fitting of Radio Flux & Spectral index Profiles

Electron pre-acceleration to be injected to DSA ?

Electrons need to be pre-accelerated from $p_{th,e}$ to p_{inj} in order to get injected into DSA process.

Understanding kinetic processes in the shock front is important.

 \Rightarrow Plasma simulations

Properties of Astrophysical Plasmas

ICM: IntraCluster Medium

		solar wind (IPM)	ISM	ICM	solar flare	$\beta_n = \frac{P_{gas}}{T} \propto \frac{n_H T}{T^2}$
	$n_H (\mathrm{cm}^{-3})$	5	0.1	10-4	10 ¹⁰	$P_{B} P_{B} B^{2}$
	T (°K)	10 ⁵	104	5x10 ⁷	10 ⁵ -10 ⁶	θ_{Bn} : obliquity angle
	$B(\mu G)$	50	5	1	10 ⁸	B
	$c_{s} \; (\rm km/s)$	<mark>5</mark> 0	15	1000	50-150	
	$v_A ~({\rm km/s})$	40	30	180	2000	θ_{Bn}
	$\beta_P = P_g / P_B$	1.6	0.3 - 1	50 - 100	0.01	
	$\alpha_{P}\!=\!\omega_{pe}^{}/\varOmega_{e}^{}$	140	200	30	3	upstream
	$u_{s} (\rm km/s)$	500	3000	2000		shock $Q_{\parallel}: \theta_{Bn} \leq 45^{\circ}$
	$M_{\rm s}=u_{\rm s}/c_{\rm s}$	10	200	2-3	$M \sim \rho^1$	$\frac{1}{\sqrt{2}M} \qquad $
	$M_{\!A} = \! u_{\rm s}/v_A$	13	100	20-30	$\square_A \approx \rho_p$	$\mathcal{Q}_{\perp}: \mathcal{O}_{\mathrm{Bn}} \geq 43$

particle acceleration at collisionless shocks depend on $M_s, M_A, \theta_{Bn}, \beta_p, \alpha_p$

Previous studies on collisionless shocks focus mainly on low β (<1) plasma (e.g. solar wind & ISM). Physics of weak shocks in β =100 ICM could be quite different (e.g. various microinstabilities).

Electron pre-acceleration in weak Q-perp shocks in high beta ICM cf. Guo et al. 2014a, 2014b

- (1) **Reflection** by magnetic deflection (mirror) at the shock ramp
- (2) Shock Drift Acceleration (SDA) along the shock surface
- (3) **Temperature anisotropy** $(T_{e_{\parallel}} > T_{e_{\perp}})$ due to backstreaming electrons
- (4) Generation of waves via the Electron Firehose Instability (EFI)
- (5) Fermi-like acceleration bwt the shock and upstream waves

Electron pre-acceleration in weak ICM shock

Guo et al. 2014a, 2014b

- Reflected electrons preferentially move along the upstream B
- EFI induced by electron T anisotropy.
- Upstream electrons are efficiently accelerated (SDA+Fermi-I process by upstream waves).

 $\gamma \sim 2$

2D PIC simulations for Q-pep shocks (electron acceleration)

Model Nat	$me^a M_s$	$M_{\rm A}$	v_0/c	$\theta_{ m Bn}$	β	$T_e = T_i [\mathrm{K(keV)}]$	$\frac{m_i}{m_e}$
$M2.3^d$	2.3	21	0.0325	63°	100	$10^8(8.6)$	100
M2.0	2.0	18.2	0.027	63°	100	$10^8(8.6)$	100
M2.15	2.15	19.6	0.0297	63°	100	$10^8(8.6)$	100
M2.5	2.5	22.9	0.035	63°	100	$10^8(8.6)$	100
M2.75	2.75	25.1	0.041	63°	100	$10^8(8.6)$	100
M3.0	3.0	27.4	0.047	63°	100	$10^8(8.6)$	100

Kang et al. 2019

18

 $M_f^* \sim 2.3$: First critical Mach number due to ion reflection

Evolution of upstream electron energy spectra

Blue: $\Omega_{ci}t = 10$, Red: $\Omega_{ci}t = 30$, Green: $\Omega_{ci}t = 60$

- -Subcritical shocks: only SDA
- -Supercritical shocks:

suprathermal tail via Fermi-like acceleration

- -Pre-acceleration is saturated due to lack of power in longer $\boldsymbol{\lambda}$
- -Pre-acceleration may not go all the way to DSA

Suprathermal fraction

 suprathermal fraction increases with Ms
 saturates Ω_{ci}t>20

 $M_{ef}^{*} \sim 2.3$

Three kinds of waves are expected:

- 1. phase-standing whistlers excited by reflected ions $kc/\omega_{
 m pi}\sim 1$
- 2. Non-propagating ($\omega_r = 0$) oblique waves by EFI $\frac{i}{kc}/\omega_{\rm pe} \sim 0.4$
- 3. Propagating ($\omega_r \neq 0$) oblique waves by **EFI** : weak

Summary

- 1. Radio relics observed in merging galaxy clusters are interpreted as quasi-perpendicular shocks with $M_s \sim 2 3$.
- 2. 2D PIC simulations to study electron pre-acceleration at weak Qperp shocks by Shock Drift Acceleration (SDA) and Fermi-like acceleration due to upstream waves excited by the electron firehose instability (EFI)
- 3. First critical Mach number due to ion reflection: $M_f^* \sim 2.3$ EFI critical Mach number for electron pre-acceleration: $M_{ef}^* \sim 2.3$ Ion-reflection governs shock structure and affects electronreflection
- 4. Pre-acceleration due to EFI may not be sufficient for electron to be injected to DSA, because the wave power at larger λ is small.