Substructures associated with the sloshing cold front in the Perseus cluster

Yuto Ichinohe (Rikkyo University)

Aurora Simionescu, Norbert Werner, Andy Fabian, Tadayuki Takahashi

Clusters of galaxies and ICM

- Most of the baryons are in the form of diffuse intergalactic plasma (IGM)
- Clusters of galaxies
 - largest gravitationally-bound objects in the Universe
 - grow by merger and/or accretion
 - 85% dark matter, 12% ICM, 3% galaxies and stars
- Intracluster medium (ICM)
 - high-temperature (10⁷-10⁸ K), low-density (10⁻⁴-10⁻¹ cm⁻³) plasma
 - shines in X-ray -> most accessible IGM
 - its fundamental microphysics is still not well known

ICM microphysics

viscosity, conductivity, magnetic fields, turbulence, inhomogeneity etc.

- fundamental parameters of the most dominant phase of baryon
- important in astrophysics
 - how energies branch into other forms of energy
 - how efficiently the energy transportation takes place
- important in cosmology
 - HSE mass estimation
- important in plasma physics
 - high-temperature and low-density end of the plasma phase space
 - cannot be reproduced in labs

X-ray substructure

ICM must respond to thermal/kinematic disturbance the response emerges as X-ray substructure, reflecting ICM microphysics

- supersonic motion -> shock
- ram pressure stripping -> stripped tail
- merger with non-zero impact parameter -> gas sloshing spiral
- cool gas moving in the hot ambient medium -> cold front

Cold fronts

Bullet cluster (Owers+09)

- sharp (<λ_{mfp}) contact discontinuity
 widely used to probe ICM microphysics
 transport process suppressed due to magnetic
 - field (Vikhlinin+01)
 - thermal conductivity suppressed by a factor of 250-2500 (Ettori+00)

have mostly been treated as single objects

Cold front substructures

Cold fronts are not just simple ICM substructures -- they themselves have substructures!

- Kelvin-Helmholtz instabilities
- plasma depletion layer

Using CF substructures to infer ICM microphysics

e.g. azimuthal variation of the cold front in Abell 3667 (Ichinohe+17)

- azimuthally resolved SB / deprojected thermodynamic profile
- likely KHI
 - -> upper limit of ICM viscosity ~200 g/cm/s (5% Spitzer)
 - < 5% Spitzer (NGC 1404, Su+17)
 - < 20% Spitzer (A2142, Wang+18, consistent with Braginskii)

using substructures, quantitative estimations are becoming possible but small -- difficult to measure thermodynamic properties

Sloshing cold front in the Perseus cluster

What else can be quantitatively constrained using CF substructures?

Perseus: nearby (z~0.0173), X-ray brightest, >Msec Chandra obs.
 -> ideal target for thermodynamic studies of individual substructures

Sloshing cold front in the Perseus cluster

- morphologically similar to recent numerical simulations
 - smooth interface vs. layered morphology -- KHI?
- Feathers & brightness dip -- magnetic amplification?

1. Double-layered interface

Double-layered interface -- SB profile

Double-layered interface -- thermodynamics

KHI developing on the sloshing CF

what we observed:

- two significant SB breaks
 - multiple edges (sloshing KHI, Roediger+13b)
- first break: kT/S / P→, n ∖
 - likely (mild) cold front
- second break: kT/S / P / , n ∖
 - not cold front (at least in the classical sense)

KHI developing on the sloshing CF

interpretation: KHI developing on the sloshing cold front

- First break: initial cold front
 - smeared by developing KHI -> no clear jump
- Second break: current KHI eddies envelope
 - induced by the shear at the first front
 - KHI is not coherent -> continuous change
- flat kT/S -> convergent flow (c.f. Virgo CF, Werner+16)
- 2T modeling also supports the scenario
- aspect ratio is consistent with numerical simulation results (Roediger+13a,b)

Implications on ICM microphysics

P dip between two breaks

- c.f. A3667, KHI on merger CF
- $\Delta P \sim 10^{-2} \text{ keV/cm}^3$
 - turbulence
 - V_{1d} ~ 400 km/s
 - Hitomi 100-200 km/s
 - magnetic fields (Keshet+10)
 - B ~ 30 µG
 - consistent with Reiss+14 if the second break is the CF

Implications on ICM microphysics

if turbulence

 $Q_{turb} = C_Q \rho V_{1d}^3 / L \sim 10^{-26} \text{ erg/cm}^3 / \text{s}$

- can support the cooling rate at this radius ~ 10⁻²⁷ erg/cm³/s
- consistent with Zhuravleva+14 (~10⁻²⁶ erg/cm³/s, SB fluctuation)

indicating the importance of KHI-induced turbulence (not very much studied observationally)

- cannot regulate this process
- other processes are needed

2. Feather-like structures

Gas depletion

unsharp masked image

relative deviation image

SDSS optical

Alternating bright and dark regions in the unsharp-masked image

- especially dark at the middle (F2)
- no association with optical / radio
- different from the surroundings only in normalization
- -> gas depletion

Gas depletion due to magnetic fields

unsharp masked image relative deviation image MHD gas sloshing simulation (Werner+16) **ICM** density magnetic field strength 30 kpc x (kpc) 1 1.01 1.02 1.03 1.04 x (kpc) 0.97 0.98 0.99 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1

morphologically similar to recent MHD simulations (Werner+16)

-> projected gas depletion region due to amplified B

- quasi-linear structures in Virgo CF (Werner+16)
- 'channel's in A520, A2142 (Wang+16,18)

Gas depletion due to magnetic fields

- ΔP ~ 10⁻² keV/cm³
 - B ~ 30 µG, not implausible (c.f. ZuHone+11)
- other interpretations
 - ghost bubble? too small?
 - turbulence? why localized?

Summary

Substructures of cold fronts (X-ray sub-sub-structure) are useful for quantitative discussion about ICM microphysics.

We analyzed archival >1Msec Chandra data of Perseus and found

- 1. double-layered structure at the NE rim of the sloshing CF
 - significant multiple edge
 - first break=CF, second break≠CF
 - ➡ KHI layer
 - pressure dip -> $Q_{turb} \sim 10^{-26} \text{ erg/cm}^{3/s}$
 - consistent with SB fluctuation result by Zhuravleva+14
 - can support the radiative cooling at this radius
- 2. feather-like structures below the western half of the CF
 - no association with optical or radio
 - just dark without kT/Z differences
 - projected plasma depletion region
 - B ~ 30 µG
 - not implausible regarding recent MHD simulations