AGN heating with CRs in a magnetized, turbulent ICM

Kristian Ehlert, Christoph Pfrommer (AIP, Potsdam) Rainer Weinberger (CfA, Cambridge) Rüdiger Pakmor, Volker Springel (MPA, Garching) March 6, 2019

- Heating clusters with cosmic rays (Ehlert et al., 2018)
- Simulations of the Sunyaev-Zel'dovich of bubbles (Ehlert et al., 2019)

 missing pressure in lobes; at most
 5 - 10% of pressure due to magnetic field
 & CR electrons

X-ray image with radio contours of Perseus jet help to constrain the contents of bubbles assuming equipartition (Fabian et al., 2011)

- missing pressure in lobes; at most
 5 - 10% of pressure due to magnetic field
 & CR electrons
- linked to hotspots observationally

X-ray image with radio contours of the jet of Centaurus A (Worrall, 2009). Multitude of X-rays cores detectable within the jet.

• missing pressure in

lobes; at most 5-10% of pressure due to magnetic field & CR electrons

- linked to hotspots observationally
- simulations: collision of internal shocks

Relativistic jet simulation (Perucho and Martí, 2007) with developing shock fronts.

• missing pressure in

lobes; at most 5-10% of pressure due to magnetic field & CR electrons

- linked to hotspots observationally
- simulations: collision of internal shocks

Relativistic jet simulation (Perucho and Martí, 2007) with developing shock fronts.

 \rightarrow significant CR proton population!

Heating and cooling rates: Perseus

Moving to MHD jet simulations

AREPO: unstructured-mesh

- MHD moving-mesh code AREPO
- NFW cluster potential

Moving to MHD jet simulations

Initial magnetic field

- MHD moving-mesh code AREPO
- NFW cluster potential
- External turbulent magnetic field (Kolmogorov)

Moving to MHD jet simulations

AREPO: Jet injection region (Weinberger et al., 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential
- External turbulent magnetic field (Kolmogorov)
- Jet module
 - Prepare low-density state in pressure equilibrium
 - Inject kinetic energy
 - Initial magnetic field & CRs
 - Refine to sustain density contrast

AREPO: Jet injection region (Weinberger et al., 2017)

- Subgrid CR acceleration:
 - Reality: Internal shocks
 - Code: $E_{\rm cr}/E_{\rm th} \ge 0.5$

AREPO: Jet injection region (Weinberger et al., 2017)

- Subgrid CR acceleration:
 - Reality: Internal shocks
 - Code: $E_{
 m cr}/E_{
 m th} \ge 0.5$
- CR transport:
 - CRs are advected
 - Emulate CR streaming ≈ anisotropic CR diffusion & Alfvén cooling

Streaming cosmic rays

• CRs excite Alfvén waves

Scattered CR proton on magnetic field perturbations

Streaming cosmic rays

Scattered CR proton on magnetic field perturbations

- CRs excite Alfvén waves
- CRs self-confined via scattering on Alfvén waves
- In clusters: $\mathbf{v}_{\rm st} \approx -\mathbf{v}_{\rm A} \frac{\mathbf{b} \cdot \nabla P_{\rm cr}}{|\mathbf{b} \cdot \nabla P_{\rm cr}|}$

Streaming cosmic rays

Scattered CR proton on magnetic field perturbations

- CRs excite Alfvén waves
- CRs self-confined via scattering on Alfvén waves
- In clusters: $\mathbf{v}_{\mathrm{st}} \approx -\mathbf{v}_{\mathrm{A}} \frac{\mathbf{b} \cdot \nabla P_{\mathrm{cr}}}{|\mathbf{b} \cdot \nabla P_{\mathrm{cr}}|}$
- Alfvén waves partially damped
- Transfer of CR to thermal energy via Alfvén wave damping:

 $\mathcal{H}_{\rm cr} = |\mathbf{v}_{\rm A} \cdot \nabla P_{\rm cr}|$

Bubble evolution

Bubble evolution in a turbulent cluster

Heating and cooling rates: Steady-state model

cooling \approx conduction + CR heating (Jacob and Pfrommer, 2017)

Heating and cooling rates: Simulation

Correct profile at 20 Myr and high central isotropy within 15 kpc

Heating and cooling rates: Simulation

Require new duty cycle at later times

Magnetic draping

Draping by Dursi and Pfrommer (2008)

Magnetic enhancement in the wake

Enhanced magnetic field in wake helps CRs escape

Magnetic field structure

Magnetic enhancement and draping general feature

Magnetic field structure

Magnetic enhancement and draping general feature

Jet morphology

Low energy/power jets mix more efficiently

CR distribution

CRs still present

Jet morphology

Even though bubbles become invisible in X-ray observations

Bubble dynamics

frequency dependant shift of CMB spectrum to higher frequencies

Thermal SZ effect for 1000 times more massive typical cluster (Carlstrom et al., 2002)

- frequency dependant shift of CMB spectrum to higher frequencies
- thermal electrons from cluster up-scatter CMB photons
 - $\delta i_{\rm th}(x) = g(x)y_{\rm gas}$
 - $y_{\rm gas} \propto \int {\rm d}z \ n_{\rm e,gas} k T_{\rm e}$

Spectral distortion due to thermal SZ effect (blue) for reference cluster.

- frequency dependant shift of CMB spectrum to higher frequencies
- thermal electrons from cluster up-scatter CMB photons
 - $\delta i_{\rm th}(x) = g(x)y_{\rm gas}$
 - $y_{\rm gas} \propto \int {\rm d}z \; n_{\rm e,gas} k T_{\rm e}$
- if cluster moves (kinetically) relative to CMB; Doppler boosted CMB

•
$$\delta i_{\rm kin}(x) = -h(x)w_{\rm gas}$$

•
$$w_{\rm gas} \propto \int {\rm d}z \; n_{\rm e,gas} rac{v_{\rm gas,}}{c}$$

Spectral distortion due to kinetic SZ effect (orange) for reference cluster.

- frequency dependant shift of CMB spectrum to higher frequencies
- thermal electrons from cluster up-scatter CMB photons
 - $\delta i_{\rm th}(x) = g(x) y_{\rm gas}$
 - $y_{\rm gas} \propto \int dz \ n_{\rm e,gas} k T_{\rm e}$
- if cluster moves (kinetically) relative to CMB; Doppler boosted CMB
 - $\delta i_{\rm kin}(x) = -h(x)w_{\rm gas}$
 - $W_{\rm gas} \propto \int dz \ n_{\rm e,gas} \frac{V_{\rm gas,z}}{c}$
- if relativistic particles in AGN bubble; CMB photons IC scattered out of microwave band
 - $\delta i_{\rm rel}(x) = [i(x) i(x)]\tau_{\rm rel}$
 - $w_{\rm gas} \propto \int dz \ n_{\rm e,rel}$

-2 -3H 15 5 10 20 $x [hv/kT_{CMB}]$ Spectral distortion due to relativistic SZ effect (green) for reference cluster.

Unveiling composition of bubbles with SZ effect

- Assume model for bubble morphology: Ellipsoid
- Fill bubbles with thermal electrons of certain temperature to match observational SZ signal

Mock observations with ALMA of Perseus by Pfrommer et al. (2005)

CARMEN observations of the SZ signal in MS0735

Chandra X-ray

CARMEN observations of the SZ signal in MS0735

Chandra X-ray

SZ signal after central point source subtraction (Abdulla et al., 2019)

Simulating the bubbles of MS0735

Thermal Sunyaev Zel'dovich effect in turbulent MS0735-like cluster

Thermal and relativistic bubbles

Thermal bubbles leave no SZ imprint

Thermal and relativistic bubbles

Very hot bubbles are detectable as troughs in the SZ signal

Thermal and relativistic bubbles

.. relativistic bubbles also show troughs in the SZ signal

Comparison with simulations

Relativistic ellipsoidal bubble inserted in initial conditions

Comparison with simulations

Shocked cocoon modifies profile significantly

Summary

- CR heating balances cooling in cluster centers
- Magnetic draping confines CRs and stabilizes bubbles
- Amplified magnetic field in wake \Rightarrow CRs escape

Summary

- CR heating balances cooling in cluster centers
- Magnetic draping confines CRs and stabilizes bubbles
- Amplified magnetic field in wake \Rightarrow CRs escape
- Assuming an ellipsoidal bubble to model SZ observations is reasonable, if
 - Pressure component in cluster of shocked cocoon is included
 - Jet inclination is not too low / bubble not old

Summary

- CR heating balances cooling in cluster centers
- Magnetic draping confines CRs and stabilizes bubbles
- Amplified magnetic field in wake \Rightarrow CRs escape
- Assuming an ellipsoidal bubble to model SZ observations is reasonable, if
 - Pressure component in cluster of shocked cocoon is included
 - Jet inclination is not too low / bubble not old

Outlook

- Simulations with cooling and accretion \rightarrow self-regulated evolution?
- Cosmological simulations for more realistic environment

References

- Abdulla, Z. et al: 2019, Astrophys. J. 871(2), 195
- Carlstrom, J.E., Holder, G.P. and Reese, E.D.: 2002, Annu. Rev. Astron. Astrophys. 40, 463
- Dursi, L.J. and Pfrommer, C.: 2008, Astrophys. J. 677(2), 993
- Ehlert, K. et al: 2019, Astrophys. J. Lett. 872(1), L8
- Ehlert, K. et al: 2018, Mon. Not. R. Astron. Soc. 481, 2878
- Fabian, A.C. et al: 2011, Mon. Not. R. Astron. Soc. 418(4), 2154
- Jacob, S. and Pfrommer, C.: 2017, Mon. Not. R. Astron. Soc. 467(2), 1449
- Perucho, M. and Martí, J.M.: 2007, Mon. Not. R. Astron. Soc. 382(2), 526
- Pfrommer, C., Enßlin, T.A. and Sarazin, C.L.: 2005, Astron. Astrophys. 430, 799
- Weinberger, R. et al: 2017, Mon. Not. R. Astron. Soc. 470(4), 4530
- Worrall, D.M.: 2009, Astron. Astrophys. Rev. 17(1), 1

Perseus Cluster

X-ray (Chandra composite) and optical (Blackbird observatory) images of the Perseus cluster (adopted from Fabian et al., 2011)

Cool core clusters

- $t_{\rm cool} < 1~{\rm Gyr}$
- relatively low SF
- no cooling flows
- jet power correlates with cooling power
- jet power suffices to halt cooling flow

Histogram of jet tracers

Bubble stability: Magnetic field

Efficient mixing for unmagnetized jet and ICM

Bubble stability: Magnetic field

Bubble stability: Magnetic field

Internal magnetic fields stabilize the bubble additionally

Bubble stability: Power

Increasing jet power decreases mixing efficiency

Bubble stability: Energy

Increasing jet energy decreases mixing efficiency

Jet Mach numbers

Mach numbers generally low

Bubble evolution

Bubble energy evolution

Bubble CRs

Profiles

