Into the Storm: Variable Gusts, Intracluster Squalls & Intermittent Downpours Preliminary Results from Romulus Groups and Clusters

ARIF BABUL UNIVERSITY OF VICTORIA

Michael Tremmel (Yale) Tom Quinn (U of Washington) Urmila Chadayammuri (Yale/CfA) Seoyoung Lyla Jung (Victoria) Douglas Rennehan (Victoria) Daisuke Nagai (Yale)

The ROMULUS Simulations

Certified organic, free-range, locally grown supermassive black holes

- ✓ Early Seeding in low mass halos
- Self-consistent and physically motivated dynamics, growth, and feedback
- ✓ Shown to make realistic M < 1.E+12 Msun galaxies in detailed sense (zoom and cosmological boxes)</p>
- ✓Organic M > 1.E+12 M_{sun} systems
- **√**No hormones or additives
- ✓ <u>Naturally</u> produces large-scale outflows

RomulusC

10¹⁴ M_{sun} Galaxy Cluster Tremmel+2019

ROMULUSC++ 10^{13.5-15} M_{sun}

Romulus25 25 Mpc Volume Tremmel+ 2017

Resolution: 250 pc (grav) 50 pc (hydro) ~1e5 M_{sun}

injected, the

1000 km/s

5-e ergy transferred **thermally** to

all

 Outflows launched from 100 pc scales
 Budapest ICM 2019

-100

-50

0

(10³-10⁴ yrs)

 Outflows launched from 100 pc scales
 Budapest ICM 2019

RomulusC z = 0.5

50

100

104

10³

10²

10¹

10⁰

Entropy[cm² keV]

injected, the

s-energy transferred **thermally** to

a

 Outflows launched from 100 pc scales
 Budapest ICM 2019

RomulusC z = 0.5

 10^{-10}

 10^{-11}

10⁻¹²

rel Pa

Pre

injected, the

s-energy transferred **thermally** to

all

 Outflows launched from 100 pc scales
 Budapest ICM 2019

RomulusC z = 0.5

Density[m_{ρ} cm⁻²]

The Rich Physics of Groups and Clusters Romulus25, RomulusC, RomulusC+...

Resolution: 250 pc (grav), 50 pc (hydro), 3.4e5/2.1e5 M_{sun} (DM/gas)

Systems: 33 groups ($2e12 < M_{vir} < 2e13$), 1 ($M_{vir}=1.5e14 M_{sun}$) + 2 More

RomulusC Gas Density

Zoom-In Simulation $M_{vir}(z=0) = 1.5e14 M_{sun}$

Chadayammuri+2019 (19XX.XXXX) Tremmel+2019 (1806.01282) Tremmel+2017

Name	Spatial Res. ^a kpc	$M_{DM} M_{\odot}$	$M_{gas} \ M_{\odot}$	
RomulusC	0.25	3.4×10^5	2.1×10^5	
TNG300 ^b	1.5	7.9×10^7	7.4×10^{6}	
TNG100 ^b	0.75	5.1×10^6	9.4×10^5	
TNG50 (in progress ^c)	0.3	4.4×10^5	$8.5 imes 10^4$	
Horizon-AGN ^d	1	$8.0 imes 10^7$	1.0×10^7	
Magneticum ^e	10	1.3×10^{10}	2.9×10^9	
Magneticum ^e high res	3.75	6.9×10^8	1.4×10^8	
Magneticum ^e ultra high res	1.4	3.6×10^7	7.3×10^6	
C -EAGLE f,g	0.7	9.6×10^6	1.8×10^6	
EAGLE ^g (50, 100 Mpc)	0.7	9.6×10^6	1.8×10^6	
Omega500 ^h	5.4	1.6×10^9	2.7×10^8	
MACSIS ⁱ	5.9	5.7×10^9	1.0×10^9	
$BAHAMAS^{j}$	5.9	5.7×10^9	1.0×10^9	
Rhapsody-G ^k	5.0	1.0×10^{9}	1.9×10^{8}	

Zoom-In Simulation $M_{vir}(z=0) = 1.5e14 M_{sun}$

Gas Density

Marinacci+17, Dubois+14, Bocquet+16, Armitage+18, Schaye+15, Shirasaki+ 18, Barnes+17, Wu+ 15, McCarthy+17

Chadayammuri+2019 (19XX.XXXX) Tremmel+2019 (1806.01282) Tremmel+2017

Name	Spatial Res. ^a kpc	$M_{DM} M_{\odot}$	M_{gas} M_{\odot}	
RomulusC	0.25	3.4×10^5	2.1×10^{5}	
TNG300 ^b	1.5	7.9×10^7	7.4×10^{6}	
TNG100 ^b	0.75	5.1×10^6	9.4×10^5	
TNG50 (in progress ^c)	0.3	4.4×10^5	$8.5 imes 10^4$	
Horizon-AGN ^d	1	$8.0 imes 10^7$	1.0×10^7	
Magneticum ^e	10	1.3×10^{10}	2.9×10^9	
Magneticum ^e high res	3.75	6.9×10^8	1.4×10^8	
Magneticum ^e ultra high res	1.4	3.6×10^7	7.3×10^{6}	
C-EAGLE ^{f,g}	0.7	9.6×10^6	1.8×10^{6}	
EAGLE ^g (50, 100 Mpc)	0.7	9.6×10^6	1.8×10^6	
Omega500 ^h	5.4	1.6×10^9	2.7×10^8	
MACSIS ⁱ	5.9	5.7×10^9	1.0×10^9	
BAHAMAS ^j	5.9	5.7×10^9	1.0×10^9	
Rhapsody-G ^k	5.0	1.0×10^{9}	1.9×10^{8}	

Zoom-In Simulation $M_{vir}(z=0) = 1.5e14 M_{sum}$

Marinacci+17, Dubois+14, Bocquet+16, Armitage+18, Schaye+15, Shirasaki+ 18, Barnes+17, Wu+ 15, McCarthy+17

Chadayammuri+2019 (19XX.XXX) Tremmel+2019 (1806.01282) Tremmel+2017

[•]HI Density

Name	Spatial Res. ^a kpc	${ m M}_{DM} \ M_{\odot}$	$M_{gas} \ M_{\odot}$	
RomulusC	0.25	3.4×10^5	2.1×10^5	
TNG300 ^b	1.5	7.9×10^7	7.4×10^6	
$TNG100^{b}$	0.75	5.1×10^6	9.4×10^5	
TNG50 (in progress ^c)	0.3	4.4×10^5	$8.5 imes 10^4$	
Horizon-AGN ^d	1	$8.0 imes 10^7$	1.0×10^7	
Magneticum ^e	10	1.3×10^{10}	2.9×10^9	
Magneticum ^e high res	3.75	6.9×10^8	1.4×10^8	
Magneticum ^e ultra high res	1.4	3.6×10^7	7.3×10^6	
C-EAGLE ^{f,g}	0.7	$9.6 imes 10^6$	1.8×10^6	
EAGLE ^g (50, 100 Mpc)	0.7	9.6×10^6	1.8×10^6	
Omega500 ^h	5.4	1.6×10^9	2.7×10^8	
MACSIS ⁱ	5.9	5.7×10^9	1.0×10^9	
$BAHAMAS^{j}$	5.9	5.7×10^9	1.0×10^9	
Rhapsody-G ^k	5.0	1.0×10^{9}	1.9×10^{8}	

Zoom-In Simulation $M_{vir}(z=0) = 1.5e14 M_{sun}$

Metal Density

Marinacci+17, Dubois+14, Bocquet+16, Armitage+18, Schaye+15, Shirasaki+ 18, Barnes+17, Wu+ 15, McCarthy+17

Overall cluster evolution:

RomulusC BCG Properties

AGN Activity and Quenching of Brightest Cluster Galaxy

AGN Activity and Quenching of Brightest Cluster Galaxy

AGN Activity and Quenching of Brightest Cluster Galaxy

Outflows are ubiquitous over the simulation lifetime Outflows are collimated by disk and ICM pressure, flow to $> 0.1 R_{200}$ and constantly wobble primarily due to pre-existing channels and ICM weather.

9

Global ICM Properties RomulusC lies on observed M500-T500-S500 relations

 M_{500} - T_{500}

 $S(R_{500,2500}) - T_{500}$

Global ICM Properties Radial profiles over z=0.3-0.5: cool core cluster

Arnaud+'10 and McDonald+'13,14: **obs. cool cores**

McDonald +'17: **all clusters**

Arnaud+ clusters are closer in mass to Romulus C; McDonald+ are more massive.

Multiphase Intracluster Medium? AGN heated particles rise and settle at 30-500 kpc AGN stabilizes central entropy at ~10 keV cm²

Multiphase Intracluster Medium? Gas with range of (low) K in the ICM — some is cold gas coming in from far. But we also see ICM cooling: cold clouds?

Chadayammuri+ in prep

Multiphase Intracluster Medium? Gas with range of (low) K in the ICM — some is cold gas coming in from far. But we also see ICM cooling: cold clouds?

1500

Chadayammuri+ in prep

Budapest ICM 2019

 $Log \rho [M_{\odot}kpc^{-3}]$

Quenching of the RomulusC BCG

Z = 0.6

λ [κbc]

50 kpc

7

Z=0

RomulusC BCG Properties

BCG Properties Romulus25 — galaxy groups

BCG Properties Romulus25 — galaxy groups

BCG Properties Romulus25 — galaxy groups

Prologue to Romulus Simulations c

Tremmel+ 2019 (arxiv:1806.01282) Chadayammuri+ 2019 (imminent)

Exploring the rich physics unfolding in groups & clusters in a holistic manner

Diffuse gas properties across hierarchy *baryon fraction, entropy profile, cold/hot gas *CC/NCC dichotomy, impact of mergers

Evolution of central & satellite galaxies *morphology, SFH & assembly of centrals, *quenching & morphology transformation

BH/AGN dynamics, growth/feedback *centrals and satellites

*feedback mode, duty cycles, AGN+SN Cosmology: CMB/LSS tension

*stellar - gas- dark matter dynamics *probe hydrostatic bias as function of mass, z